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1. Overview

At pressures below 10 Pa, capacitively coupled plasmas exhibit
a non-Ohmic mode of power dissipation ("stochastic heating”).
Employing methods of asymptotic length and time scale analysis,
we derive a self-consistent kinetic electron model for this regime
[0 Reduced kinetic equation (3d1v) plus boundary conditions
0 Ohmic heating appears as a volume term (standard form)

0 Novel boundary conditions with two different heating terms.
(To be identified with Fermi heating and pressure heating?)

2. Scaling of the Transition Regime

The transition regime (1...10 Pa, both heating modes present)
is characterized by a pronounced scale separation
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0 Parameter 7 is used for asymptotic analysis
0 Limit e — 0 gives quasi-neutrality and hard wall reflection

3. Structure of the Theory

Boltzmann equation for electrons
Reflection boundary condition
Slow ion / neutral background

Maxwell equations

/Z:AZEan tg = dyt r=Lr
J/ ts=vyt= nzwrftﬂ

| Pre-sheath theory (1) | | Bulk theory (1)

l<— Series expansion in n —»l

Boltzmann equilib.
for T and @

—-> <

Local Ohmic
modpi id ¥,

Balance equation

/ for (T Dy (trivial)

Locdl Ofimic
modfi idr F @/

Linear kinetic
equltion for (uf @)
1

Bal*ce equation
for (uf (Z)) .~ | model fo

EEEER Krepunog

TORIPUOD ATepunoq [BIAL

Rec‘e l;n(g)tl

I Order 2 I I Order 1 I I Order 0

Reduc kineti'
=
model for F

Heating Terms

uonipuod Arepunoq
Bunegy onseyools,

[ €18pi0 ||| z28pi0 ||| T10p10 || 020p10 |

2005 wor kshop on Nonlocal, Collisionless
Electron Transport in Plasmas

CENTER FOR THEORETISCHE

PLASMARE 3}

SCIENCE AND TECHNOLOGY 1% il f 14 [N13

German Research Foundation DFG - Collaborative Research Ce  nter SFB 591
UNIVERSAL BEHAVIOR OF PLASMAS FAR FROM EQUILIBRIUM

4. The Effective Model

An effective model can be constructed by appropriately adding
quantities and equations of first and second order.

0 Closed kinetic equation for the EEDF F = F(® 4+ yF(®)
[0 Accurate up to second order in the smallness parameter n
[0 Ohmic and stochastic heating in a unified formalism

Reduced kinetic equation for the energy distribution F(ts, r, €)
(with quasi-neutrality as a constraint)
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The diffusion coefficients are (D, is Ohmic heating)
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The novel boundary condition has only terms of first order in 7.
It comprises two separate energy diffusion terms with coefficients
Hrn and Hpp, respectively, and a (negligible) remainder R,
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The "Fermi heating” coefficient Hgp, reflects the hard wall heating
(for those particles who reach it),

Hen = (2¢ + 20(0)F $4:2#(0) 6(c + 4(0)).

The "pressure heating” coefficient Hpp, is given as an integral over
the pre-sheath zone
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The following quantities stem from the pre-sheath model:

[0 Pre-sheath potential ¢: Determined by quasi-neutrality

[0 Reflection coordinate z*: Zero for particles with € > —¢(0),
i.e., those which reach the wall. For others z* = ¢C-1(e).

[0 RF modulated fields EZ and fluxes ¥ in the pre-sheath,
determined by a non-local transport equation
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5. Outlook
Directions of future research:

[0 Verification of the interpretation of the heating terms
O Incorporation of electron wall losses into the theory
[0 Numerical realization and implementation in a simulator




